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Abstract. We report for the first time exact ground-states deduced for the D = 2 dimensional generic
periodic Anderson model at finite U , the Hamiltonian of the model not containing direct hopping terms
for f -electrons (tf = 0). The deduced itinerant phase presents non-Fermi liquid properties in the normal
phase, emerges for real hybridization matrix elements, and not requires anisotropic unit cell. In order to
deduce these results, the plaquette operator procedure has been generalised to a block operator technique
which uses blocks higher than an unit cell and contains f -operator contributions acting only on a single
central site of the block.

PACS. 71.10.Hf Non-Fermi-liquid ground states, electron phase diagrams and phase transitions in model
systems – 05.30.Fk Fermion systems and electron gas – 67.40.Db Quantum statistical theory; ground
state, elementary excitations – 71.10.Pm Fermions in reduced dimensions (anyons, composite fermions,
Luttinger liquid, etc.)

1 Introduction

The periodic Anderson model (PAM) is one of the ba-
sic models largely used in the study of strongly corre-
lated systems whose properties can be described at the
level of two effective bands, like heavy-fermion systems [1],
intermediate-valence compounds [2], or even high critical
temperature superconductors [3]. The model contains a
free d band hybridized with a correlated system of f elec-
trons for which the one-site Coulomb repulsion in the form
of the Hubbard interaction is locally present. Seen from
the theoretical side, PAM has the peculiarity that even its
one dimensional Hamiltonian is sufficiently complicated
to not allow the knowledge of its exact solutions even in
1D. As a consequence, taking into account that the exact
description possibilities increase in difficulty with the in-
crease of the dimensionality of the system in the physical
region D = 1− 3, the physics provided by PAM is almost
exclusively interpreted based on approximations. This sit-
uation enhance the difficulty of a good quality theoretical
analysis, since exact bench-marks in testing the approx-
imations or numerical simulations are almost completely
missing. Because of this fact, even the starting point of
the theoretical description, the knowledge of the ground-
state is poorly developing. Given by this, efforts have been
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made for the construction of exact ground-states at least
in restricted regions of the parameter space. In this frame,
based on the observation that the infinitely repulsive case
in relative terms is easier to treat, the first exact ground-
states have been deduced at U = ∞, in restricted re-
gions of the parameter space, based on a work of several
years [4–7].

The first exact ground-states at finite value of the
interaction have been published recently in 1D [8,9],
and 2D [10,11], respectively. These ground-states emerge
on continuous but restricted regions of the T = 0 phase
diagram of the system which extend from the low U limit
up to the high U limit as well. These solutions have
been obtained by a decomposition of the Hamiltonian in
positive semidefinite operators (PSO) as follows (i) the
interaction term has been transformed into a PSO re-
quiring at least one f electron on every lattice site [8],
and (ii) the remaining parts of the interaction term to-
gether with the one-particle components of the Hamilto-
nian have been transformed in PSO based on cell oper-
ators, using bonds in 1D [8,9] or elementary plaquette
operators in 2D [10–12]. Two type of ground-states have
been obtained in this manner: localized and itinerant once.
The itinerant solution was found to emerge for imaginary
hybridization matrix elements (Vr), while the localized so-
lution for real Vr. Besides, the itinerant solution has been
obtained only in the presence of anisotropic or distorted
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unit cells. The cell operators used in the transformation
of the Hamiltonian had always the extension of an unit
cell (elementary plaquette in 2D), the f -creation operators
being “uniformly” considered, acting on all lattice sites of
the elementary plaquette.

We must note, that all exact ground-states deduced up
today for PAM at finite value of the interaction U , based
on the cell operators mentioned above, require the pres-
ence of the direct hopping tf �= 0 as well in the correlated
f band of the Hamiltonian, since the products of these
cell operators leading to PSO generate always tf �= 0 con-
tributions. The presence of the direct f hopping can be
argued based on experimental data in the case of Pu [13],
or some heavy-fermion compounds [14], but it remains in
fact an extension term to the generic PAM Hamiltonian
which does not contain such type of contributions. Par-
ticularly for 2D, since for the tf = 0 limit the results
deduced in references [10,11] are no more valid, the case
of the generic PAM Hamiltonian treated in exact terms
remains still a completely open problem.

Driven by the challenge to obtain exact solutions for
the generic PAM in 2D, the first questions which have to
be clarified in these conditions are the following: Can we
consider the ground-states deduced for PAM at finite U in
the presence of direct f hopping in the Hamiltonian also
potential ground-states for the generic PAM at finite U
(and tf = 0)? The unit cell distortions and imaginary hy-
bridization matrix elements are essential for the emergence
of itinerant phases? This questions are important, since
are connected to main problems related to PAM, for ex-
ample the localized vs. itinerant behaviour of f -electrons,
and of particles in general in the system [15–20], or the
interpretation of the PAM behaviour based exclusively on
the local f -moment and its compensation (analyses made
based on Kondo physics).

Starting from this background, in this paper we are
reporting the first exact ground-states for generic PAM in
2D at finite value of the interaction. As a consequence,
the deduction is made without the presence of the direct
hopping terms for f electrons in the Hamiltonian of the
model (tf = 0). The obtained exact ground-state is itin-
erant, emerges for real values of the Hamiltonian parame-
ters (including the hybridization matrix elements as well),
is not necessarily connected to distorted unit cells and
presents clear similarities in its physical properties with
the itinerant solution obtained in the presence of direct f
hopping terms in Ĥ [10]. Since the momentum distribu-
tion function is continuous without any non-regularities
in its derivatives of any order, the presented ground-state
is a non-Fermi liquid state in the normal phase, possesses
a large spin degeneracy, and globally is paramagnetic.

In order to deduce the reported results, major develop-
ments have been applied in comparison with the plaquette
operator method used in reference [10] and described in
detail in reference [11], which has been generalised to a
block operator procedure. The introduced block is quali-
tatively different from the elementary plaquette previously
used since a) it has an extension greater than an unit cell
and b) it contains f creation operators acting only on

one unique central site of the block. This choice allows us
to represent the PAM Hamiltonian in term of PSO block
products even in the absence of the direct f hopping terms
and to obtain non-localized ground-states in the presence
of real hybridization matrix elements and absence of lat-
tice distortions. All these are not possible to obtain in the
frame of references [10,11].

The consequences of the presented results are multi-
ple. (i) At the level of exact solutions in 2D, the difference
between the case tf �= 0 and tf = 0 in Ĥ , (at least at
the level of known exact ground-states) seems to not be
extremely significant. Physically this can be understood
based on the hybridization term which allows the move-
ment of f -electrons even if direct hopping in the correlated
band is not present in Ĥ, and, in fact for the behaviour
of the system (and also the ground-state), not the bare
bands are important but the diagonalized once. For the
presented case the tf �= 0 value seems only to shift the
position in the parameter space of the emerging phase
in comparison with the tf = 0 situation, without chang-
ing essentially its physical properties. (ii) The fact that
similar phases are obtained in exact terms for tf �= 0
and tf = 0 as well shows that PAM can provide a be-
haviour different from Kondo physics. The statement is
underlined as well by the absence of the exponential con-
tributions characteristic for a Kondo type of behaviour in
the exactly deduced ground-state energy values (see for ex-
ample Ref. [1]). This possibility in fact exceeds the vicinity
of a metal-insulator transition mentioned from this point
of view in reference [11] since the presented phase dia-
gram region extends continuously from the low U limit
to the high U limit as well, up to U → ∞. (iii) Combin-
ing the here obtained result with the results previously
deduced, we observe that the delocalization of the elec-
trons in PAM can emerge simply because in this manner
the system decreases its ground-state energy. There are
situations (depending on the parameters of the starting
Hamiltonian) [9–12] when long-range density-density cor-
relations are developing creating a localized phase, main-
taining localized as well the f electrons within the system.
When the delocalization occurs, the long-range density-
density correlation is lost. (iv) We learn that using dif-
ferent type of blocks in constructing block operators in
the process of the decomposition of the Hamiltonian into
products of positive semidefinite terms, different classes
of Hamiltonians can be analysed. The block form, its ex-
tension, the uniform or non-uniform nature of the oper-
ator action inside the block, the type of dependence of
the numerical coefficients entering in the block operator
on the physical parameters (like spin), all are important
in this description process. Based on this degree of free-
dom, the method can be applied as well in the absence
of direct f -hopping terms as well. (v) It becomes clear
that in conditions in which the Hamiltonian remains her-
mitic, the real or imaginary (or even complex) hybridiza-
tion matrix elements could provide similar physical con-
sequences. The nature of these matrix elements is given
by the symmetry [21], and in fact imaginary hybridization
matrix elements has been used previously as well (see for
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example [16]). (vi) The non-Fermi liquid properties
present in rigorous terms in the PAM phase diagram, at
least in 2D are not essentially connected to imaginary hy-
bridization matrix elements, nor direct f hopping in the
Hamiltonian, nor the presence of distorted unit cells.

The remaining part of the paper has been constructed
as follows. Section 2 presents the model and its description
with block operators, Section 3 describes the deduced ex-
act ground-state, Section 4 presents the conclusions, and
Appendix A containing mathematical details closes the
presentation.

2 The presentation of the model

2.1 The expression of the Hamiltonian

We start with a generic PAM Hamiltonian taken for a 2D
lattice in the form

Ĥ =
∑
k,σ

εd
k,σd̂†k,σd̂k,σ + Ef

∑
k,σ

f̂k,σf̂k,σ

+
∑
k,σ

(
Vkd̂†k,σf̂k,σ + h.c.

)
+ Û , (1)

where, the first term gives the kinetic energy
for d-electrons, the second term is the on-site f -electron
energy, the third term represents the hybridization,
and the interaction term Û describes the on-site Hub-
bard interaction written for f electrons Û = UÛf ,
Ûf =

∑
i n̂

f
i,↑n̂

f
i,↓, U > 0 being considered during this

paper. As it can be seen, direct f -band is not present in
the starting Hamiltonian.

For technical reasons, we transcribe Ĥ in r space, us-
ing for the operators ĝ = d̂, f̂ the Fourier sum ĝi,σ =∑

k e−ikri ĝk,σ. For this, we take into consideration at
the level of the hybridization term, local (V0) and non-
local (V1) nearest-neighbour contributions as well. The
d-electron dispersion is taken into account including con-
tributions up to next nearest-neighbour hoppings, which is
not unusual in the case of the study of real materials [23].
The kinetic energy of d-electrons becomes

T̂d =
∑
i,σ

[
txd̂†i,σd̂i+x,σ + tyd̂†i,σ d̂i+y,σ + tx+yd̂

†
i,σ d̂i+x+y,σ

+ty−xd̂†i,σ d̂i+y−x,σ+t2xd̂†i,σ d̂i+2x,σ+t2yd̂
†
i,σ d̂i+2y,σ+h.c

]
,

(2)

where x,y represent the versors of the unit cell (see Fig. 1),
and the dispersion relation for d electrons presented in
equation (1) becomes

εd
k = txe−ikx + tye−iky + t2xe−2ikx + t2ye−2iky

+tx+ye−ik(x+y) + ty−xe−ik(y−x) + c.c. (3)

Fig. 1. The block Ai (thick line) centred on the site i of the
lattice. x and y are the versors of the unit cell.

For the hybridization term we consider

V̂ =
∑
i,σ

[
V0d̂

†
i,σf̂i,σ + Vx

(
d̂†i,σf̂i+x,σ + f̂ †

i,σd̂i+x,σ

)

+Vy

(
d̂†i,σ f̂i+y,σ + f̂ †

i,σd̂i+y,σ

)
+ h.c.

]
, (4)

from where, the Vk hybridization matrix element from
equation (1) can be expressed as

Vk = V0 +
(
Vxe−ikx + Vye−iky + c.c.

)
= V0 + V1,k. (5)

Denoting by Êf = Ef

∑
i,σ n̂f

i,σ the on-site f -electron en-
ergy and using equations (2–5), for the starting Hamilto-
nian presented in equation (1) we find

Ĥ = T̂d + Êf + V̂ + Û , (6)

The interaction term during this paper is exactly trans-
formed in the form [8]

Ûf =
∑
i

n̂f
i,↑n̂

f
i,↓ = P̂ ′ +

∑
i

(∑
σ

n̂f
i,σ − 1

)
, (7)

where, the positive semidefinite operator P̂ ′ =
∑

i(1 −
n̂f
i,↑ − n̂f

i,↓ + n̂f
i,↑n̂

f
i,↓) defined by equation (7) requires for

its lowest zero eigenvalue at least one f -electron on every
lattice site. As will be clarified further on, the represen-
tation presented in equation (7) is a key feature from the
point of view of the interaction term in the deduction of
exact ground-states at U > 0 presented here.

2.2 The Hamiltonian written in term of block
operators

Let us introduce connected to every site i of the lattice
the block Ai as presented in Figure 1. It contains the lat-
tice sites i − 1, i, i + 1, j, l, being centred on the site i.
The numbering of the sites inside the block is block inde-
pendent and given by the numbers 1, 2, 3, 4, 5 in Figure 1.
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The site-numbering inside the block is considered block-
independent given by the translational symmetry of the
system. Starting from the block Ai we are introducing
block operators as a sum of fermionic operators acting on
the sites contained in Ai as follows

Âi,σ = a1,dd̂i,σ + a2,dd̂j,σ + a3,dd̂i+1,σ + a4,dd̂l,σ

+a5,dd̂i−1,σ + a1,f f̂i,σ, (8)

where the an,d and a1,f prefactors are numerical coeffi-
cients. Taking a block operator centred on another site
Âi′,σ, the indices of the fermionic operators follow the in-
dices of the new sites (i′−1, i′, i′+1, j′, l′), but for the nu-
merical prefactors of Âi′,σ we are keeping the same strat-
egy in notation: 1 represents the centre of the block, the
index 2 is of the site at the bottom of the block, the no-
tation inside the block continuing anti clock-wise at the
border of the block from 3 up to the index 5.

The block operator Âi,σ used in the present description
has significant differences in comparison to the plaquette
operators used previously [10,11]. Its novelty is twofold: (i)
the here introduced block operator contains f -fermionic
operators only in its unique central site, so contains a non-
homogeneous f -operator action inside the block, and (ii)
the number of lattice sites per block being 5/4, the used
block has an extension greater than an unit cell. These are
key features which allow the study of the PAM Hamilto-
nian without the presence of the direct hopping terms at
the level of f -electrons.

Summing up now Â†
i,σÂi,σ over all lattice sites and

taking periodic boundary conditions into account in both
directions (for the result see Appendix A), the following
relation is obtained

−
∑
i,σ

Â†
i,σÂi,σ = T̂d + V̂

−
∑
i,σ

[
|a1,f |2n̂f

i,σ +

(
5∑

n=1

|an,d|2
)

n̂d
i,σ

]
, (9)

if the following equalities are present between the param-
eters of Ĥ and the numerical prefactors of the block op-
erators Âi,σ

− tx = a∗
1,da3,d + a∗

5,da1,d, −ty = a∗
1,da4,d + a∗

2,da1,d,

− tx+y = a∗
5,da4,d+a∗

2,da3,d, −ty−x = a∗
2,da5,d+a∗

3,da4,d,

− t2x = a∗
5,da3,d, −t2y = a∗

2,da4,d, −V0 = a∗
1,da1,f ,

− Vx = a∗
1,fa3,d = a∗

5,da1,f , −Vy = a∗
1,fa4,d = a∗

2,da1,f .

(10)

Taking into account that Âi,σÂ†
i,σ + Â†

i,σÂi,σ = |a1,f |2 +∑5
n=1 |an,d|2 and Û = UP̂ ′ − UNΛ + U

∑
i,σ n̂f

i,σ, where
NΛ represents the number of lattice sites, the Hamiltonian
from equation (6) becomes

Ĥ =
∑
i,σ

Âi,σÂ†
i,σ + UP̂ ′ + R̂, (11)

Fig. 2. Phase diagram region where the presented ground-
state solution occurs. The anisotropy parameter is χ = 1.5
and the relation |V0/Vx| = 1/(2|t|) with t = t2x/tx must also
hold. For t → 0 the presented surface extends along the z =
(Ef + U)/|tx| axis to z → ∞.

where R̂ = −UNΛ − 2NΛ(|a1,f |2 +
∑5

n=1 |an,d|2) + KN̂ .
In this expression N̂ is the operator of the total number
of electrons, and the constant K is given by

Ef + U + |a1,f |2 =
5∑

n=1

|an,d|2 = K. (12)

The Hamiltonian contained in equation (11) will be
analysed in detail below. We mention that the trans-
formation of the starting Ĥ from equation (6) to the
studied Ĥ from equation (11) is possible only if the
Hamiltonian parameters (considered known variables)
satisfy the equations (10, 12). On their turn, equa-
tions (10, 12) determine the unknown block operator
parameters a1,f , a1,d, a2,d, ..., a5,d in term of Hamilton op-
erator parameters that must be considered known vari-
ables. This works only for the case in which Ĥ from equa-
tion (6) can be written in the form of Ĥ presented in
equation (11). Since the number of unknown variables is
less than the number of Hamiltonian parameters, solu-
tions for the block operator parameters will be present
only if some inter-dependences between tr, Vr, Ef , U are
present. These inter-dependences fix the parameter space
region PH in which the here obtained results are valid (see
Fig. 2. and the explications from Sect. 3.2).

3 Exact ground-state wave-function solution

3.1 The derivation of the exact ground-state

We are studying the Hamiltonian from equation (11) at
a fixed number of particles N in the system. As a con-
sequence, since N is a constant of motion, Ĥ becomes
Ĥ = P̂ + Eg, where the positive semidefinite operator
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P̂ =
∑

i,σ Âi,σÂ†
i,σ + UP̂ ′ has zero minimum eigenvalue,

and the constant Eg is given by Eg = KN − NΛ(U +
2|a1,f |2 +2

∑5
n=1 |an,d|2). In these conditions, the ground-

state wave function of the model inside PH is defined via
P̂ |Ψg〉 = 0. To find |Ψg〉, we have to keep in mind that P̂ ′
requires for its minimum (and zero) eigenvalue at least one
f -electron on every lattice site, and that the introduced
block operators satisfies the following properties

Â†
i,σÂ†

i,σ = 0, Â†
i,σÂ†

j,σ′ = −Â†
j,σ′Â

†
i,σ. (13)

Starting from equation (13) we observe that the block
operator part of equation (11) applied to

∏
i Â

†
i,↑Â

†
i,↓

gives zero. Furthermore, given by the presence of P̂ ′ in
Ĥ , we add to the ground-state the contribution F̂µ =∏

i(µi,↑f̂
†
i,↑+µi,↓f̂

†
i,↓), where µi,σ are arbitrary coefficients.

As a consequence, the ground-state wave-function with
the property P̂ |Ψg〉 = 0 becomes

|Ψg〉 =
∏
i

[
Â†

i,↑Â
†
i,↓
(
µi,↑f̂

†
i,↑ + µi,↓f̂

†
i,↓
)]

|0〉, (14)

where, |0〉 is the bare vacuum with no fermions present.
The wave-function presented in equation (14) is the first
exact ground-state obtained for generic PAM at finite U .
The product in equation (14) must be taken over all lattice
sites. Because of this reason, the product of the creation
operators in equation (14) introduces N = 3NΛ particles
into the system, so |Ψg〉 corresponds to 3/4 filling. All de-
generation possibilities of the ground-state are contained
in equation (14), since the wave function with the prop-
erty P̂ |Ψ〉 = 0 at 3/4 filling always can be written in the
presented |Ψg〉 form. We however underline that PAM con-
tains two hybridized bands, and 3/4 filling for a two-band
system means in fact half filled upper hybridized band
(the lower band being completely filled up). We mention,
that |Ψg〉 describes rigorously only the U > 0 case, since
the presence of the F̂µ operator into the ground-state is
just required by the non-zero U value. As a consequence,
the ground-state at U = 0 cannot be expressed in the form
presented in equation (14).

3.2 Solutions for the block operator parameters

We are now interested to find the T = 0 phase dia-
gram region where the solution from equation (14) is
valid. For this reason the system of equations (10, 12)
must be solved for the block operator parameters. Solv-
ing the problem, we are considering all Ĥ parameters
real. From the Vx, Vy components of equation (10) we find
a∗
5,d = a3,d(a∗

1,d/a1,d), a∗
4,d = a2d(a∗

1,d/a1,d), and intro-
ducing the anisotropy parameter χ = a2,d/a3,d = ty/tx
(which must be real since ty/tx is real), we realize that
all y components of Ĥ parameters can be expressed via x
components and χ as follows

ty = χtx, Vy = χVx, , t2y = χ2t2x, |tx+y| = 2|χt2x|.
(15)

Solutions are obtained for |tx+y| = |ty−x|, sign(χ) =
−sign(tx+y), sign(tx) = sign(V0)sign(Vx), and the remain-
ing equations for the x components of the Ĥ parameters
provide the solutions

|a1,d| =
|tx|

2
√|t2x|

,

|a2,d| = |a4,d| = |χ||a3,d| = |χ||a5,d| = |χ|
√
|t2x|,

|a1,f | = 2
√
|t2x| |V0|

|tx| , (16)

all an,d, a1,f being considered real. Introducing the nota-
tions t = |t2x/tx|, and v = |V0/tx|, the solutions require
|V0/Vx| = 1/(2t) and are situated in the parameter space
on the surface

Ef + U

|tx| =
1
4t

+ 2t
[
1 + χ2 − v2

]
. (17)

This surface is presented (for χ = 1.5) in Figure 2. As can
be seen, it extends from the small U domain continuously
to the high U domain up to U → ∞ in the t → 0 limit.
Modifying χ, the general shape of the obtained phase dia-
gram region will not be changed. To be situated inside the
phase diagram region PH where the reported ground-state
occurs for example in the isotropic case χ = 1, (which
means t1 = tx = ty, t2 = t2x = t2y, t′2 = tx+y =
ty−x, V1 = Vx = Vy), the parameters t1, t2, V0, U can
be arbitrarily chosen, and |t′2| = 2|t2|, |V1| = 2|V0t2/t1|
must hold together with equation (17) which determine
Ef/|t1|. As can be observed, PH can be reached by quite
physical Ĥ parameter values.

3.3 Physical properties of the obtained solutions

The magnetic properties of the wave-function of the form
presented in equation (14) have been analysed in detail
previously [10,11]. Here the expression of Âi,σ is com-
pletely new, but the described techniques can be well ap-
plied. Given by the arbitrary nature of the µi,σ coefficients,
|Ψg〉 possesses a large spin degeneracy in the total spin of
the system, being globally paramagnetic.

Studying the particle number distribution on different
sites created by the

∏
i product over the creation opera-

tors in |Ψg〉 from equation (14) together with the concrete
block operator presented in equation (8), it turns out that
the obtained ground-state wave-function contains differ-
ent contributions with one, two and three particles per
site in the lattice. As a consequence, the system described
by |Ψg〉 is not characterised by an uniform particle distri-
bution, the expectation value of the hopping matrix el-
ements and non-local hybridizations is non-zero, so the
system is not localized and the electrons in the ground-
state are itinerant. All these information show that the
deduced ground-state is an itinerant paramagnet.

The deduced ground-state being itinerant, its proper-
ties can be easier described using a k-space representation.



300 The European Physical Journal B

Starting this, for the Fourier transform of the block oper-
ators we find

Â†
i,σ =

∑
k

eikri
(
a∗
k,dd̂

†
k,σ + a∗

1,f f̂ †
k,σ

)
, (18)

where a∗
k,d = a∗

1,d + a∗
2,de

−iky + a∗
3,de

+ikx + a∗
4,de

+iky +
a∗
5,de

−ikx. Using now the definition of εd
k and Vk from

equations (3, 5), we observe that exactly when the pre-
sented solution holds (i.e. Eqs. (10, 12) are satisfied), we
obtain

Vk = −a1,fa∗
k,d, εd

k = K − |ak,d|2. (19)

Using the notation ∆k =
√|a1,f |2 + |ak,d|2, we introduce

new canonical Fermi operators

Ĉ†
1,k,σ =

1
∆k

(
a∗
1,f d̂†k,σ − a∗

k,df̂
†
k,σ

)
,

Ĉ†
2,k,σ =

1
∆k

(
a∗
k,dd̂

†
k,σ + a∗

1,f f̂ †
k,σ

)
, (20)

which satisfy standard Fermionic anti-commutation rules.
Using now equations (19, 20), we realize that Ĥ from equa-
tion (1) becomes

Ĥ =
∑
k,σ

E1,kĈ†
1,k,σĈ1,k,σ

+
∑
k,σ

E2,kĈ†
2,k,σĈ2,k,σ + UP̂ ′ − UNλ, (21)

where E1,k = K = constant, and E2,k = −K+Ef+U+εd
k,

E1,k−E2,k = ∆k > 0. Since for the ground-state P̂ ′|Ψg〉 =
0, we obtain Ĥgr, the Hamiltonian exactly diagonalized for
the ground-state, in the form

Ĥgr =
∑
k,σ

KĈ†
1,k,σĈ1,k,σ +

∑
k,σ

E2,kĈ†
2,k,σĈ2,k,σ − UNλ.

(22)

So, for the deduced ground-state (i.e. in the parameter
space inside PH), the Hamiltonian can be mapped into a
two-band Hamiltonian with separated bands (determined
also by U) whose upper band is completely flat (note that
the starting d-band in equation (1) is with dispersion and
there is no hopping present for f -electrons in the starting
Hamiltonian). Because of N = 3NΛ, the upper flat band
(in which fermions are created by Ĉ†

1,k,σ) is half filled, and
the lower band (in which Ĉ†

2,k,σ creates particles) is com-
pletely filled up. As a consequence, denoting the ground-
state expectation values by 〈...〉 = 〈Ψg|...|Ψg〉/〈Ψg|Ψg〉, we
have (see also [10])

〈Ĉ†
1,k,σĈ1,k,σ〉 =

1
2
, 〈Ĉ†

2,k,σĈ2,k,σ〉 = 1. (23)

We also mention that since the lower band is completely
filled up, 〈Ĉ†

2,k,σĈ1,k,σ〉 = 0. The second relation from

Fig. 3. Momentum distribution function n(k) = 〈Ĉ†
1,k,σĈ1,k,σ〉

for the upper half filled diagonalized band, taken over the whole
first Brillouin zone.

equation (23) is trivial from physical point of view since
the lower band is completely filled up. Contrary to this,
the first relation (see Fig. 3) shows a momentum distribu-
tion function for the upper band without non-regularities
in its derivatives of any order, signalling a clear non-Fermi
liquid type of behaviour in 2D deduced in exact terms. The
deduced phase is present also in the isotropic case (χ = 1),
and we underline that the result has clear physical signi-
fication even in the case in which PH behaves complete
repulsively from RG point of view [22].

The novelty of this result in comparison with the be-
haviour reported in [10] is threefold: (i) here we are sit-
uated in generic PAM (i.e. tf = 0); (ii) the hybridiza-
tion matrix element is real; and (iii) distorted unit cell is
not necessary for the emergence of the itinerant phase. As
a consequence, the presence of the deduced behaviour is
much more general then suggested by our previous work.

Expressing f̂k,σ, d̂k,σ from equation (20), and using
equation (23), all needed ground-state expectation values
connected to Ĥ in term of the starting fermionic oper-
ators can be deduced. Introducing the notation I(k) =
|Vk|2/(|a1,f |4 + |Vk|2), we find

〈
f̂ †
k,σf̂k,σ

〉
= 1 − 1

2
I(k),〈

d̂†k,σ d̂k,σ

〉
=

1
2

+
1
2
I(k),

Vk

〈
d̂†k,σ f̂k,σ

〉
= −1

2
|a1,f |2I(k). (24)

Based on equation (24) it can be checked that nf
k and nd

k as
well are free from non-regularities in the whole first Bril-
louin zone. The ground-state energy becomes Eg/NΛ =
−U − 2|a1,f |2 +

∑5
n=1 |an,d|2.

4 Summary and conclusions

We are presenting for the first time exact ground-states
for the generic periodic Anderson model (PAM) at finite
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on-site repulsion for f -electrons U , in D = 2 dimensions,
the Hamiltonian not containing direct hopping terms for
f -electrons (tf = 0). For this reason, and on this line a) we
generalised the previously used elementary plaquette op-
erators [10,11] to a block operator containing non-uniform
f -operator contributions (the f -operators acting only on
one site of the block); b) the block itself has been chosen
to have an extension higher than an unit cell, so it cannot
be considered elementary plaquette operator as used in
previous studies; c) based on the presented developments
it was possible to analyse for the first time for PAM the
tf = 0 generic case at finite U and 2D in exact terms
(in restricted regions of the parameter space); d) again
based on points a), b) an itinerant state holding non-Fermi
liquid properties and presenting similarities with the itin-
erant state deduced in reference [10] has been obtained
without distortions in the system and presence of real hy-
bridization matrix elements (we underline that results of
the type mentioned in the points c), d) cannot be deduced
in the frame of references [10,11]); e) the deduced exact
results allow to present the first exact phase diagram re-
gion for the generic PAM at finite U and 2D, which is
not included in the previously deduced phase diagram re-
gions; f) starting from the presented technique and results
we learn that using different type of blocks in construct-
ing block operators, different classes of Hamiltonians can
be analysed. The block form, its extension, the uniform or
non-uniform nature of the operator action inside the block,
the spin dependence or non-dependence of the numerical
coefficients of the block operator, all are important in this
description process; g) the fact that at least in some re-
gions of the parameter space (which however extend from
the low U to the high U limit), similar phases are obtained
in exact terms at tf �= 0 and tf = 0 for PAM, underlines
that this model can provide a behaviour differently from
Kondo physics (where only the local f-moments and its
compensation play the main role). This can happen not
only in the region of a potential metal-insulator transition
but also elsewhere in the phase diagram.
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Appendix A: The plaquette operator
contributions summed up over the lattice sites

The expression Â†
i,σÂi,σ summed up over the whole lat-

tice considered with periodic boundary conditions in both

directions is presented below.∑
i,σ

Â†
i,σÂi,σ =

∑
i,σ

{[
d̂†i,σ d̂i+x,σ

(
a∗
1,da3,d + a∗

5,da1,d

)
+ h.c.

]

+
[
d̂†i,σ d̂i+y,σ

(
a∗
1,da4,d + a∗

2,da1,d

)
+ h.c.

]
+
[
d̂†i,σ d̂i+(x+y),σ

(
a∗
5,da4,d + a∗

2,da3,d

)
+ h.c.

]
+
[
d̂†i,σ d̂i+(y−x),σ

(
a∗
2,da5,d + a∗

3,da4,d

)
+ h.c.

]
+
[
d̂†i,σ d̂i+2y,σa∗

2,da4,d + d̂†i,σd̂i+2x,σa∗
5,da3,d + h.c.

]
+
[
f̂ †
i,σd̂i+x,σa∗

1,fa3,d + d̂†i,σ f̂i+x,σa∗
5,da1,f + h.c.

]
+
[
f̂ †
i,σd̂i+y,σa∗

1,fa4,d + d̂†i,σ f̂i+y,σa∗
2,da1,f + h.c.

]

+f̂ †
i,σf̂i,σ|a1,f |2 + d̂†i,σ d̂i,σ

(
5∑

n=1

|a∗
n,d|2

)

+
[
d̂†i,σ f̂i,σa∗

1,da1,f + h.c.
]}

. (A.1)
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12. Zs. Gulácsi, Proceedings SCES-2002
13. A.J. Arko et al., Phys. Rev. B. 62, 1773 (2000)
14. A.J. Arko et al., J. Elec. Spec. 117-118, 323 (2001)
15. K. Held, R. Bulla, Eur. Phys. J. B. 17, 7 (2000)
16. K. Held et al. Phys. Rev. Lett. 85, 373 (2000)
17. C. Huscroft, A.K. McMahan, R.T. Scalettar, Phys. Rev.

Lett. 82, 2342 (1999)
18. K. Held, A.K. McMahan, R.T. Scalettar, Phys. Rev.

Lett. 87, 276404 (2001)
19. M.B. Zölfl, I.A. Nekrasov, Th. Pruschke, V.I. Anisimov, J.

Keller, Phys. Rev. Lett. 64, 276403 (2001)
20. P. van Dongen et al. Phys. Rev. B. 64, 195123 (2001)
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